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The effect of underheating of droplets on the critical conditions that arise when 
a surface is cooled by a stream of aerosol droplets is investigated. It is shown 
that in contrast to the static case, when underheating of droplets raises the cri- 
tical temperature (relative to the saturation temperature) by a factor of 2-3, the 
corresponding increase in the dynamic situation is by a factor of tens. 

The efficiency of cooling heated surfaces with streams of aerosol droplets is deter- 
mined to a considerable measure by the mechanism of the interaction between the droplets and 
the surface. The familiar heat-exchange crisis: when the surface temperature exceeds some 
critical value, which depends on the physical and regime parameters of the cooling process, 
the heat-transfer coefficient decreases rapidly, other conditions being equal. This is due 
to the change from a regime of spreading and complete evaporation of droplets on the surface 
to regimes of recoils from the surface. A phenomenological description of such a phenomenon 
and the indicated heat-exchange crisis can be found, e.g., in [i, 2]. 

A number of theoretical studies [3, 4, 5] on the problem, however, were partial and the 
critical conditions corresponding to the onset of a change in the heat-exchange regimes were 
not determined. The problem was examined more fully in [6] where for the first time the con- 
ditions for the onset of the heat-exchange crisis were formulated and the dynamic Leidenfrost 
temperature determining that crisis was found; this was done with some assumptions that did 
not distort the fundamenetal picture of the phenomenon but at the same time permitted a 
substantial simplification of the very complex situation arising during the thermal and dy- 
namic interaction of droplets with the over heated surface. Let us recall the conditions for 
a droplet to recoil from a rough surface with protuberances with a height [6] 

a ~ Lh~mln (We, e). ( 1 )  

The e q u a l i t y  s i g n  i n  (1 )  c o r r e s p o n d s  t o  t h e  o n s e t  o f  t h e  c r i s i s ,  i . e . ,  d i r e c t  c o n t a c t  o f  
a d r o p l e t  w i t h  t h e  o v e r h e a t e d  w a l l .  I n  t h i s  c a s e ,  t h e  o t h e r  known p a r a m e t e r s  b e i n g  e q u a l ,  
t h e  e q u a t i o n  s t emming  f r o m  (1 )  d e t e r m i n e s  t h e  dynamic  L e i d e n f r o s t  t e m p e r a t u r e  TL, wh ich  i s  
e q u a l  t o  t h e  w a l l  t e m p e r a t u r e  T w c o r r e s p o n d i n g  t o  t h e  o n s e t  o f  t h e  c r i s i s .  From ( 1 )  i t  
follows that 

TL~T.}_ 4 oLRo A ( 2 )  
3 ~.~. ~t, Ro =~L~mtn(We,~)" 

E q u a t i o n  (2 )  d e t e r m i n e s  t h e  L e i d e n f r o s t  t e m p e r a t u r e  f o r  d r o p l e t s  i n  e q u i l i b r i u m  w i t h  
t h e  v a p o r - g a s  medium, i . e . ,  h e a t e d  t o  T s .  At t h e  same t i m e ,  i n  mos t  c a s e s  t h e  s u r f a c e  i s  
c o o l e d  by a s t r e a m  o f  a e r o s o l ,  whose t e m p e r a t u r e  c o r r e s p o n d s  t o  t h e  a m b i e n t  t e m p e r a t u r e ,  
i . e . ,  T o ~ T s .  Fo r  s u c h  d r o p l e t s  t h e  L e i d e n f r o s t  t e m p e r a t u r e  T L can  s u b s t a n t i a l l y  e x c e e d  
T s f rom ( 2 ) .  A t h e o r y  f o r  u n d e r h e a t e d  d r o p l e t s  c a r e f u l l y  l o w e r e d  t o  t h e  s u r f a c e ,  i s  g i v e n  
i n  [ 7 ] .  As a r e s u l t ,  u n d e r h e a t i n g  was shown t o  be  t h e  p r i n c i p a l  f a c t o r  r e s p o n s i b l e  f o r  t h e  
c o n s i d e r a b l e  r i s e  i n  T L. C l e a r l y ,  s u c h  an  e f f e c t  can  a l s o  be  e x p e c t e d  f o r  u n d e r  h e a t e d  
d r o p l e t s  i n t e r a c t i n g  d y n a m i c a l l y  w i t h  a h e a t e d  w a l t .  Our a im i s  t o  d e t e r m i n e  t h i s  e f f e c t .  

F o r m u l a t i o n  o f  t h e  P r o b l e m .  The p r i n c i p a l  a s s u m p t i o n s  a r e s i m i l a r  t o  t h o s e  in  [ 6 ] .  A 
d i s k - s h a p e d  d r o p l e t  moving  t o w a r d  t h e  w a l l  was c o n s i d e r e d .  Under  c o n d i t i o n s  when t h e  change  
in  t h e  vo lume  o f  t h e  d r o p l e t  a s  t h e  r e s u l t  o f  e v a p o r a t i o n  can  be i g n o r e d ,  t h i s  makes i t  p o s -  
s i b l e  to describe the shape of the droplet with a single variable, the radius R of the liquid 
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disk, instead of a large number of variables. The second determinable variable is the layer 
thickness h. 

We determined the two independent variables by using the law of conservation of energy 
in differential form 

dE q- dE* + dU = fdh, 

as well as Newton's second law of motion for the droplet as a whole 

(3) 

p'V (d%/citD = f. (4) 

The system of equa t ions  for  de te rmin ing  R and h, which was ob ta ined  from (3) and (4 ) ,  has 
the form [6] 

Cv dr= R ~ dt~ + 6---f i-  k -2T - ]  j 

p'V I +  3 R 6 . dt 2 - R 7 \ dt ] J RZ ~ - 4  Ra , .  

(5) 

The force of the excess pressure is determined from the solution of the known quasista- 
tionary Reynolds problem [8] and in the general case depends on two terms [9] 

3nv"R~ ' dh 
f = - - 2 h  3 ( ] - -  P" -d-/-..] " (6) 

The first term in (6) determines the force due to the evaporation of a droplet and the second 
is due to squeezing of the vapor-gas mixture when evaporation does not occur at all. It is 
easily seen that at T o = T s we usually have p"dh/dt << j, i.e., the force is determined by the 
first term. At the same time, in the case of underheating (T o ~ T s) evaporation can be dis- 
regarded and the force acting on the droplet is written as 

3 v " R  ~ . dh i 
I -  2 ~ h - - ; - ~  - - ~ ]  (7) 

As in [6], as t+-~+0 we have an asymptotic equality R = R0, dR/dr = 0, h = ~-0, dh/dt = 
dzc/dt = -v 0 . In specific calculations it is desirable to change the origin and to consider 
the following relations as the conditions: 

R~--Ro, h~ho, dR/dt~O, dh/dt~----vo, t=O. 

We introduce the dimension less variables 

(8) 

x = R/Ro, ~ = h/Lh, �9 = t / L , ,  (9) 

which, respectively, character the degree of spreading of the droplet, the thickness of the 
vapor layer, and the duration of the collision process. Representations for the scales L h 
and L t are obtained in the standard way upon reducing system (5) and the initial conditions 
(8) to a dimensionless form. Taking Eq. (7) for f into account and going over to the vari- 
ables (9), we determine 

( 9 v"p")l/2( ~R~ )1/4 Lt=( p~Rj)I/2 (I0) 
Lh = 8 p' ,, - -  - -  " 

We note that the scale L h differs substantially from that in [6], where it had the form 

Lh----( 34 v")~"AT) 1 / 4 R ~ / 4 " a L  
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From (5) and (8) we obtain the system of dimension less equations 

d2# 
8 - -  

d~x 16 ( dx ~ 2 1 x 
d'r z x 7 _ dx J -Jr-x--  x--- ~ = ,  .q8 

2 d~x + 6 dx ,~2=__ x ~ d~l 

d~ 

dx 
(ii) 

and the initial conditions 

x 1, D ~lo>l/e, dx/dx O, dD "" = = - - - - - - - ~ / W - ~ e ,  x = O. ( 1 2 )  
dx 

O'Rov~ 
Here we have i n t roduced  two dimension l e s s  parameters  W e = ~  and , e = L J R o .  System (11) 

d i f f e r s  from the  analogous  sytem in [6] on ly  by the  r i g h t  s i d e .  The modulus s ign  in (7) has 
been i n s e r t e d  because the  r i g h t  s ide  changes s ign  when the  d r o p l e t  moves away from the  wa l l .  

C l e a r l y ,  as the  d r o p l e t  approaches t he  wa l l  the  r i g h t  s i d e  of  (11) i s  equal  to  
B ~ d~ 

Numerical Solution and Discussion. System (ii) was solved numerically for different 
values of parameters We and g, which were chosen on the basis of the following considerations. 
As follows from [10], at We ~ 5 the droplet is subdivided and, therefore, the calculations 
were carried out for We values of 0 to 3. The value of e is of the order of 10-2-10 -I 

One of the most important assumptions of the model is that it is quasistationary, which 
allows Eq. (7) to be applied. Clearly, if this condition is to be satisfied we must have 
h2/a"f<< h/(dh/dt); taking the reference for h and t into account, we obtain 

L~ dB 
a"Lt ~'--d-~ ~ I. (13) 

For water L h ~ 10-4-10 -5 m, L t ~ 10 -2 sec, a ''~ I0 -s m2/sec, and condition (13) is equivalent 
to n dD/dx << 10, which obviously is satisfied when 

d~ ~ 0(I). (14) 
dx 

We note that in [3, 4] we considered the dynamic problem for heated droplets on condi- 
tion that h = const. In this case the thickness of the vapor layer, generally speaking, re- 
mains arbitrary where upon a condition of the type of (13) cannot be formulated since the 
natural scale L h is missing. Nor can the conditions for determining the Leidenfrost tempera- 
ture be formulated in this case. Such studies, of course, cannot be considered as coming up 
to the present status of the problem. 

Since heating formally has no effect on the droplet dynamics, satisfaction of conditions 
(14) were checked by the results of numerical integration for system (II). 

As shown by calculations, as the droplet approaches the surface condition (14) is not 
satisfied in the initial part of the fall, i.e., the thermal calculation cannot be carried 
out with the quasistationary model. On the other hand, as can be easily seen heating during 
this part of the fall is small and can be disregarded.. 

As the drop further approaches the surface the dynamic regime of the drop abruptly 
changes and from a certain time condition (14) begins to be satisfied. We note that this 
time can be tracked very clearly so tht the passage to condition (14) is virtually instan- 
taneous. 

Starting from this distance droplet heating can be calculated by the method of [7]. To 
distinguish the principal anomalies of droplet heating it is sufficient to consider the two 
limiting cases, when the characteristic time of temperature equalization inside the droplet 
R0/a' is much shorter than the characteristic heating time (in this case the droplet tempera- 
ture at any time can be assumed to be uniform) and the reverse situation, when the droplet 
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Fig. I. Relative Leidenfrost temperature versus N for 
unevenly heated droplets at different underheatings: 
i) T o / T  s = 0 . 2 ;  2 )  0 . 4 ;  3 )  0 . 6 ;  4 )  0 . 8 .  

Fig. 2. Determination TL/T s for a given distance from 
the surface (height of the roughness): 0) drops gently 
settling onto the surface; i) We = i; 2) 2; 3) 3. 

heating can be considered as heating of an unbounded half-space. In explicit form the cri- 
terion for the first case is similar to condition (14), R~/a' << h/(dh/dt) or 

Lha' ~1. (15) 

It is easily seen that condition (15) is certainly not satisfied for water at R = 10 -3 m. Thus 
we must consider only the second situation of heating of a droplet as a half-space with the 
initial and boundary conditions [7] 

OT 
Oz 

~." T, ,  - -  T ! , T - +  To l . . . .  T = Tolt=o. 
~'  h z=o 

When h varies with time at a rather slow rate, i.e., when condition (14) is satisfied, the 
formulated problem reduces to that considered in [II]. The temperature T* at the lower sur- 
face of the droplet in this case is 

i ),,,2 T* = To Jr- (Tw - -  To) 1 - -  exp ~,2 a' t  erfc . ( 1 6 )  
h z . )~' h 

The Leidenfrost temperature will be defined as the surface temperature at which the droplet, 
reaching the height 5 of the roughness, manages to heat up to T s. 

Taking scales L h and L s into account, we introduce the dimensionless variables q and 
T into (16), which we then rewrite as 

i ") T___k_L = ! -- (To/Y~) ~ 
9 : e x p  1 0 - 2 h 2 - ~ x  ) h(T) } " (17) 

Ts 1 - -  9 ' 

The values 10 -2 and I0 -l in (17) are obtained upon substitution of the numerical values of 
L h and L t for water. 

The calculations from Eq. (17), generally speaking, must be carried out at h = const. 
Since this formula is used in the quasistationry case, when the height h varies slowly with 
time, the arguments 10 -2 ~/h=(~) and 10 -I r are calculated as the integrated averages 
in the period from the onset of the quasistationry regime to the next height (which in this 
case was taken to be the height of the roughness). 

The results of calculations from (17) for different values of underheating T0/T s and 
We = 1 are shown in Fig. i. We see that the curves are similar to those for underheated 
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droplets, gently settling onto an over heated surface [7]. Only the slope of the curves 
changes; this indicates that the temperature T L for dynamic drops is higher than for drops 
gently settling onto the surface. While for the latter situation TL/T s does not exceed 
2-2.5, in the dynamic case this quantity can increase tens of times (in the same range of 
the arguments). The last conclusion seems entirely natural. 

The change in the situation is illustrated in Fig. 2. Taking a certain roughness (hor- 
izontal dashed line) as an example, we obtain the respective values of TL/Ts, i.e., the 
Leidenfrost temperature, at the intersection of this line with different curves. 

As for determining the temperature to which the droplet is heated during collision with 
the overheated wall, we note that an attempt was made in [5], where the balance method was 
used to determine AT = T*-T 0. This is permissible when the droplet heats up rapidly. As 
shown by our estimates, this situation does not obtain in the case of dynamic interaction of 
the droplet with the overheated wall and hence the procedure of [5] is not an adequate physi- 
cally possible situation. Clearly, in this case we obtain overstimted results. We also note 
that from the practical standpoint the value of AT = T*-T 0 is less important than the criti- 
cal temperature TL; accordingly, it is more urgent to develop the results reported here to 
refine T L. This generalization can be made in order to allow for the molecular slip at the 
boundary of the vapor layer, the dispersion interaction forces, and the dependence of the 
equilibrium temperature at the evaporation surface on the pressure near it [12]. 

NOTATION 

a' and a" thermal diffusivity of the liquid and the vapor; g, a dimensionless parameter; 
eL, a parameter pertaining to TL; E, kinetic energy of the droplet as a whole; E,* kinetic 
energy of internal flows, corresponding to the deformation of the droplet; f, total force of 
the excess pressure acting on the droplet; h, thickness of the vapor layer; j, mass of liquid 
evaporated per unit area of the lower surface of the droplet per unit time; L, heat of the 
phase transition; L h and Lt, characteristic linear and time scales; R and R0; radii of the 
vapor layer and the spherical droplet; t, time; TL, Tw, Ts, T*, and T o Leidenfrost tempera- 
ture, the temperature of the heated surface, the saturation temperature, the temperature of 
the lower surface of the droplet, and the initial temperature of the droplet, respectively; 
U, potential energy of the surface tension; v0, initial velocity; V, volume of the droplet; 
We, modified Weber number; z and Zc, normal coordinate and the coordinate of the center of 
gravity; A, height of the roughness, nmin, minimum dimensionless thickness of the vapor layer; 
l' and l", thermal conductivities of the liquid and the vapor; ~' and ~", kinematic viscosi- 
ties of the liquid and the vapor; p' and p", densities of the liquid and the vapor; o, a pa- 
rameter introduced into (17); and is the coefficient of surface tension. 
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